医療従事者の為の最新医療ニュースや様々な情報・ツールを提供する医療総合サイト

QLifePro > 医療ニュース > 医療 > うつ病などに対するニューロフィードバック訓練への適合性をAIで予測-広島大ほか

うつ病などに対するニューロフィードバック訓練への適合性をAIで予測-広島大ほか

読了時間:約 1分31秒
このエントリーをはてなブックマークに追加
2021年11月25日 AM11:15

訓練への適応性により治療効果が変わるのがニューロフィードバック訓練の課題だった

広島大学は11月24日、訓練前に計測した安静時脳活動から、)技術を用いて、ニューロフィードバック訓練の適合性に関連した脳情報を抽出して、ニューロフィードバック訓練の適合性を予測する手法を開発したと発表した。この研究は、同大脳・こころ・感性科学研究センターの高村真広客員講師、 先端科学技術研究科情報科学領域 数理情報学研究室の吉本潤一郎准教授らの研究グループによるもの。研究成果は、「Neuroimage」に掲載されている。


画像はリリースより

ニューロフィードバックとは、ある人の脳活動を測定しながら当人にその脳活動の状態をリアルタイムで可視化することによって脳活動を特定の状態に導く、つまり「脳活動を制御する」技術のこと。薬物や刺激を用いず非侵襲的に脳の状態を変える可能性があることから、精神疾患の新しい治療法としても注目されている。例えば、疾患によってある脳部位の活動が低下している場合、その脳部位の活動を高めるニューロフィードバック訓練を行うことで、症状を改善できると考えられている。研究グループも過去に、うつ病で低下した前頭葉の活動を高めるニューロフィードバック訓練がうつ病患者の症状を改善させる効果を報告している。

しかし、ニューロフィードバック訓練は一種の学習訓練であることから、訓練に対する得手・不得手(訓練への適応性)に個人差があることが知られている。このニューロフィードバック訓練への適応性が治療効果を左右してしまう問題は、治療への実用化に向けた課題となっていた。

負荷の少ない検査で予測可能、テーラーメイド治療の実現につながる可能性

研究グループはこの問題を解決するため、簡便に測定できる安静時の脳fMRIデータから、その人がニューロフィードバック訓練にどの程度適しているのかをAI技術を用いて予測する方法を開発した。その結果、後部帯状回や後部島皮質を中心とした脳の機能的結合からニューロフィードバック訓練に上手く適応できるか否かを予測できることを発見。さらに、ニューロフィードバック訓練の標的脳部位によらず予測することに成功した。

今回の研究成果を応用することで、さまざまな特性をもつ患者群に対し、負荷の少ない検査で適切なニューロフィードバック治療を提供する「テーラーメイド治療」の実現につながると考えられる、と研究グループは述べている。

このエントリーをはてなブックマークに追加
 

同じカテゴリーの記事 医療

  • 女性型XLSA、iPS細胞技術で初の病態モデル作製、治療薬候補AZAを同定-CiRA
  • SLE患者に伴うステロイド関連大腿骨頭壊死症、疾患感受性遺伝子領域を同定-理研ほか
  • 高齢者の腎臓病の悪化に関わる原因細胞と分子を同定-京大
  • 脳動脈解離診療の国際ガイドラインを作成-国循ほか
  • IgG4関連疾患、診断での「類似疾患除外基準」有用性を確認-岡山大ほか